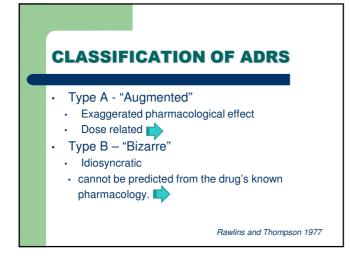


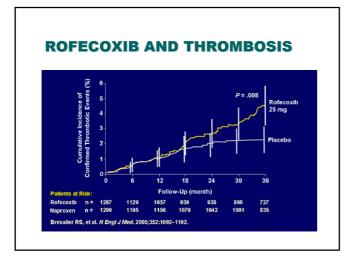
Adverse event :

-a harmful event that occurs in a patient during his/her drug treatment
- The harmful event may or may not have occurred due to the drug concerned

DEFINITIONS


Toxic effect :

• is a harmful effect caused by a drug when it is given above the maximum therapeutic dose


BURDEN OF ADRS..


- Account for...
 - 6.5% of hospital admissions
 - 4% of the hospital bed capacity
- Fatality was 0.15%
- Projected annual cost of such admissions is £466m

BMJ 2004

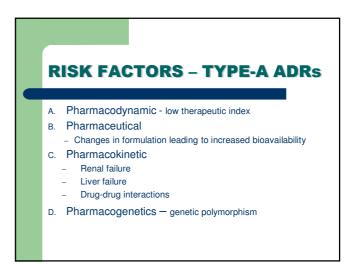


Table		ug Reactions	rae drug raegtions
	A companso	n of type A and type B adver TYPE A "Accentuated"	TYPE B "Bizarre"
	Dose relationship	Yes	No
	Frequency	Common (~75% of total)	Rarer
	Mortality	Lower	Higher
	Morbidity	Higher	Lower
	Treatment	Stop drug/reduce dose	Stop drug
			Rawlins and Thompson 1977

Chronic C	 Uncommon Related to the cumulative dose 	 Hypothalamic-pituitary-adrenal axis suppression by corticosteroids
Delayed	Uncommon Usually dose-related Occurs or becomes apparent some time after the use of the drug	Teratogenesis (eg, vaginal adenocarcinoma with diethylstilbestrol) Carcinogenesis Tardive dyskinesia
End of use	 Uncommon Occurs soon after withdrawal of the drug 	 Opiate withdrawal syndrome Myocardial ischaemia (β-blocker withdrawal)
Failure	 Common Dose-related Often caused by drug interactions 	Inadequate dosage of an oral contraceptive, particularly when used with specific enzyme inducers

MECHANISMS OF TYPE B ADRs

- Pharmaceutical variation
 - Excipients in drug formulations and contamination with toxic substances in the manufacturing process can lead to idiosyncratic adverse drug reactions
- Receptor abnormality
 - e.g.malignant hyperthermia with general anaesthetics

MALIGNANT HYPERTHERMIA

- Due to a rare dominantly inherited mutation of the Ca²⁺ release channel of the sarcoplasmic reticulum (the ryanodine receptor)
- The ryanodine receptor becomes more sensitive to lower concentrations of stimulators of Ca²⁺ channel opening
- rapid increase in intracellular calcium levels in response to inhalational anesthetics or to succinylcholine
- sustained muscle contraction, elevated temperature, increased muscle metabolism

MECHANISMS OF TYPE B ADRs

- Abnormal biological system unmasked by a drug e.g. primaquine induced haemolysis in glucose 6-phosphate dehydrogenase deficiency
- Abnormalities in drug metabolism
 e.g. isoniazid induced peripheral neuropathy in slow acetylators
- Immunological
 e.g. penicillin induced anaphylaxis

BIOACTIVATION VS. BIOINACTIVATION

- Bioactivation formation of chemically reactive metabolites during phase I metabolism
- Bioinactivation detoxification mechanisms of bioactive metabolites
- In susceptible individuals the balance between bioactivation and bioinactivation is disturbed, allowing the toxic metabolites to escape detoxification

1)

BIOACTIVATION VS. BIOINACTIVATION

- Factors that disturb this favourable balance include genetic factors or host factors such as age, enzyme induction, and disease
- An inadequately detoxified chemically reactive Metabolite cause toxicity,
 - a. directly by binding covalently to various cellular macromolecules

Ú

- b. indirectly via an immune reaction

IMMUNOLOGICAL MECHANISMS

- Explained by the hapten hypothesis
- Small molecules such as drugs are not immunogenic on their own
- Drugs can mount an immune response when they become covalently bound to macromolecules such as proteins and form haptens

DIAGNOSIS OF AN ADR

- Difficult to distinguish an adverse drug reaction from disease the great masquerader
- When an adverse event occurs during or after drug treatment it could be
 - 1) Due to the drug
 - 2) Due to the disease for which the drug was taken
 - 3) Due to an unrelated cause

DIAGNOSIS OF AN ADR

Factors that help diagnose ADRs:

1) Timing

Timing of the onset of the symptoms relative to the commencement of drug therapy

2) Pattern recognition

Can explain by known pharmacology or fit the allergy pattern of one of the suspected medicines

DIAGNOSIS OF AN ADR

Factors that help diagnose ADRs:

- Alternative explanation Inability to explain by concomitant disease or other drugs or chemicals
- De-challenge
 Disappearance of the symptom/sign after stopping the suspected medicine

DIAGNOSIS OF AN ADR

Factors that help diagnose ADRs:

- Re-challenge Reappearance of the symptom/sign after restarting the suspected medicine
 - Unethical except when no other alternative available

PREVENTION OF ADRs

- Bespoke prescribing (Type A) Tailoring initial drug doses to the individual patient and subsequently titrating the dose to avoid toxicity
 - e.g. I. Monitoring warfarin therapy with INR II. Adjusting drug doses in renal impairment

Creatinine Clearance = <u>(140 - age (years)) x Body-weight (kg)</u> 0.82 x plasma creatinine (µmol/l)

PREVENTION OF ADRs

- Therapeutic Drug Monitoring (Type A) To be applicable, the drug should have a concentration related therapeutic effect
 - e.g. ciclosporin, digoxin, gentamicin, lithium, phenytoin, and theophylline

PREVENTION OF ADRs

- Documentation of history of drug allergy (Type B)
- Monitoring the patient using simple laboratory tests (Type B)
 e.g. Routine white cell counts to detect clozapine induced agranulocytosis

PREVENTION OF ADRs

- Pharmacogenetics (Type A and B)
 - e.g. Testing for HLA-B*1502 allele in Southeast Asians to prevent carbamazepineinduced Stevens-Johnson syndrome